Final - Analysis of Several Variables (2023-24)
 Time: 3 hours.
 Attempt all questions, giving proper explanations.

You may quote any result proved in class without proof, but not results on differential forms.

1. (a) Give an example of a scalar field $f(x, y)$ on \mathbf{R}^{2} which has partial derivatives everywhere, yet is not continuous at at least one point.
[3 marks]
(b) If a scalar field $f(x, y)$ on \mathbf{R}^{2} has partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ everywhere in an open set S, and if there is an $M>0$ such that

$$
\left|\frac{\partial f}{\partial x}(x, y)\right|<M, \quad\left|\frac{\partial f}{\partial y}(x, y)\right|<M \quad \text { for all }(x, y) \in S
$$

then show that f is continuous everywhere in S.
2. (a) Consider two bounded regions $S, T \subset \mathbf{R}^{2}$. Denote points in T by (u, v) and points in S by (x, y). Suppose there is a 1-1 map from T onto S given by $x=X(u, v), y=Y(u, v)$. The change of variables formula gives

$$
\iint_{S} f(x, y) d x d y=\iint_{T} f[X(u, v), Y(u, v)]|J(u, v)| d u d v
$$

for continuous functions f on S. Derive this formula non-rigourously by looking at small rectangular regions in T; in particular show how the factor $|J(u, v)|$ arises in the right hand side. (Do NOT give the rigourous proof).
[3 marks]
(b) Next let $S=\mathbf{r}(T)$ be a parametric surface described by a differentiable function \mathbf{r} defined on a region T in the $u v$-plane, and let f be a scalar field defined and bounded on S. Define the surface integral $\iint_{\mathbf{r}(T)} f d S$ of f over S, and explain how this arises by looking at small rectangular regions in T as above. [2 marks]
3. Compute the area of that portion of the conical surface $x^{2}+y^{2}=z^{2}$ which lies between the two planes $z=0$ and $x+2 z=3 . \quad$ [5 marks]
4. Show that the vector field

$$
\mathbf{f}(x, y)=[\sin (x y)+x y \cos (x y)] \mathbf{i}+\left[x^{2} \cos (x y)\right] \mathbf{j}
$$

on \mathbf{R}^{2} is the gradient of a scalar field, and find a corresponding potential function φ. [5 marks]
5. Consider the surface in $\mathbf{r}:[0,1]^{2} \rightarrow \mathbf{R}^{3}$ given by $\mathbf{r}(u, v)=(u+v) \mathbf{i}+(u-v) \mathbf{j}+4 v^{2} \mathbf{k}$.
(a) Let $\boldsymbol{\alpha}(t)$ be a curve in $[0,1]^{2}$ so that $\mathbf{r}(\boldsymbol{\alpha}(t))$ is a curve on the surface. Show that the fundamental vector product $\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}$ is normal to this curve. [$\mathbf{3}$ marks]
(b) Find the tangent plane to the surface at the point corresponding to $(u, v)=(0.5,0.5)$. [3 marks]
6. State Stokes' theorem in \mathbf{R}^{3} which relates a surface integral to a line integral.
7. Let f be a function defined on the rectangle $Q=[a, b] \times[c, d]$. Prove or disprove:
(a) Prove or disprove: If $|f|$ is integrable on Q then f is integrable on Q.
(b) Prove or disprove: If f is integrable on Q then $|f|$ is integrable on Q.
(c) If both f and $|f|$ are integrable on Q then show that

$$
\left|\iint_{Q} f d x d y\right| \leq \iint_{Q}|f| d x d y . \quad[2 \text { marks }]
$$

8. Find

$$
\oint_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}
$$

where C is a closed curve in \mathbf{R}^{2} which goes once around the origin in the counterclockwise direction. [5 marks]
9. Let $P, Q: \mathbf{R}^{2} \rightarrow \mathbf{R}$ be continuously differentiable functions, and let Ω be an open set in \mathbf{R}^{2} with piecewise smooth boundary $\partial \Omega$ having orientation in the counterclockwise direction. A two dimensional version of the divergence theorem would state

$$
\begin{equation*}
\int_{\Omega}\left[\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right] d x d y=\int_{\partial \Omega}\left[(P, Q) \cdot\left(n_{1}, n_{2}\right)\right] d s \tag{*}
\end{equation*}
$$

where $\left(n_{1}, n_{2}\right)$ is the outward pointing unit normal vector at a point on $\partial \Omega$, and the integral on the right is the line integral with respect to the arc length. The term $(P, Q) \cdot\left(n_{1}, n_{2}\right)$ is just the dot product of the two vectors.
Show that $\left(^{*}\right)$ is exactly Green's theorem. [6 marks]

